Set: A set is defined as a well defined collection of well defined distinct objects. The objects are called the elements or members of the set. We denote a set usually by capital letters, such as, A, B, X, Y, \ldots , whereas the lower-case letters a, b, p, q, \ldots will usually be used to denote elements of sets. The set having no element is called empty set or nul set denoted by ϕ . If x is an element of a set X then we denote it by $x \in X$. The cardinality or the number of elements in a set S is denoted by |S|.

Let A and B be two sets such that elements of A are also the elements of B then we say that A is a subset of B, denoted as $A \subseteq B$. Two sets A and B are said to be equal, written as A = B, if $A \subseteq B$ and $B \subseteq A$. Let A be a set. A collection of all subsets of A is called power set of A, denoted as P(A). If |A| = n, then $|P(A)| = 2^n$.

Examples:

- 1. Natural numbers \mathbb{N} , Integers \mathbb{Z} , Rationals \mathbb{Q} , Real numbers \mathbb{R} .
- 2. The solution of the equation $x^2 4x + 4$.
- 3. The set of nobel laureates in the world.
- 4. The set of points in \mathbb{R}^2 .
- 5. The people living in India.

Operations on sets Let U be the universal set and A and B be two of its subsets. Then:

- 1. A union B, denoted as: $A \cup B = \{x \mid x \in A \lor x \in B\}.$
- 2. A intersection B, denoted as: $A \cap B = \{x \mid x \in A \land x \in B\}.$
- 3. A minus B denoted as: $A B = \{x \mid x \in A \land x \notin B\}.$
- 4. A complement, denoted as: $A^c = \{x \mid x \notin A\}$, where U is universal set.
- 5. The symmetric difference of A and B written as: $A \oplus B = (A \cup B) (A \cap B)$.

Set Identities Let A and B be two sets and U be universal set. Then:

- 1. Identity Laws: $A \cup \emptyset = A$ and $A \cap U = A$
- 2. Associative Laws: $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$
- 3. Commutative Laws: $A \cup B = B \cup A$ and $A \cap B = B \cap A$
- 4. Distributive Laws: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 5. De Morgan's Laws: $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$.
- 6. Complementation Law: $(A^c)^c = A$

Inclusion and exclusion principle:

1. For two sets A_1 and A_2 : $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$.

- 2. For three sets A_1, A_2 and A_3 : $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| |A_1 \cap A_2| |A_1 \cap A_3| |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$.
- 3. General form: $|\bigcup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i| \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n|.$

Cartesian product: Let A and B be two sets. Then the cartesian product $A \times B$ of the sets is defined as $A \times B = \{(a, b) : a \in A, b \in B\}.$

- The elements of $A \times B$ are called ordered pairs.
- If |A| = n, |B| = m, then $|A \times B| = n \times m$.
- The Cartesian product $A \times B$ and $B \times A$ are not equal, unless $A = \emptyset$ or $B = \emptyset$.
- The Cartesian product of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \ldots \times A_n$, is the set of all ordered *n*-tuples (a_1, a_2, \ldots, a_n) , where $a_i \in A_i$ for $i = 1, 2, \ldots, n$.

Examples 1: Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Then $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}, B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}, and <math>A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}.$

Example 2: Let $A = \mathbb{R}$. Then $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

Family of sets: Let *I* be a set. For each $\alpha \in I$, consider a set A_{α} . The set $\{A_{\alpha} : \alpha \in I\}$ is called a family of sets indexed by elements of *I*. Here *I* is called an index set and its elements are called index.

The family of sets $\{A_{\alpha} : \alpha \in I\}$ is called a non-empty family when the index set I is non-empty. Let $\{Y_{\alpha} : \alpha \in I\}$ be a family of index set. Then:

- The union is defined as $\bigcup_{\alpha \in I} Y_{\alpha} = \{ y : y \in Y_{\alpha} \text{ for some } \alpha \in I \}.$
- The intersection is defined as $\bigcap_{\alpha \in I} Y_{\alpha} = \{ y : y \in Y_{\alpha} \text{ for all } \alpha \in I \}.$
- Convention: The union of sets in an empty family is ϕ . The intersection of sets in an empty family of subsets of S is S.

Product of infinite family of sets: Let A_1 and A_2 be two non-empty sets. Then $A_1 \times A_2$ is identified with a set of all functions $f : \{1, 2\} \to A_1 \cup A_2$ with $f(1) \in A_1$ and $f(2) \in A_2$. For example, let $A_1 = \{a, b\}$ and $A_2 = \{c, d\}$. Then $A_1 \times A_2 = \{(a, c), (a, d), (b, c), (b, d)\}$. Define

 $f_1: \{1,2\} \to A_1 \cup A_2$ such that $f_1(1) = a$, $f_1(2) = c$ gives (a,c); $f_2: \{1,2\} \to A_1 \cup A_2$ such that $f_2(1) = b$, $f_2(2) = c$ gives (b,c); $f_3: \{1,2\} \to A_1 \cup A_2$ such that $f_3(1) = a$, $f_3(2) = d$ gives (a,d); $f_4: \{1,2\} \to A_1 \cup A_2$ such that $f_4(1) = b$, $f_4(2) = d$ gives (b,d).

Thus $A_1 \times A_2 = \{f_1, f_2, f_3, f_4\}$. Generalizing this notion leads to the following:

Let $\{A_{\alpha}\}_{\alpha \in I}$ be a non-empty family of sets. Assume that A_{α} is also non-empty for each $\alpha \in I$. Then the product the sets in the family is defined as:

 $\prod_{\alpha \in I} A_{\alpha} = \{ f : I \to \bigcup_{\alpha \in I} A_{\alpha} \text{ such that } f(\alpha) \in A_{\alpha} \forall \alpha \in I \}.$